Problem statement from ProjectEuler.net
Similarly if no digit is exceeded by the digit to its right it is called a decreasing number; for example, 66420.
We shall call a positive integer that is neither increasing nor decreasing a "bouncy" number; for example, 155349.
Clearly there cannot be any bouncy numbers below one-hundred, but just over half of the numbers below one-thousand (525) are bouncy.
In fact, the least number for which the proportion of bouncy numbers first reaches 50% is 538.Surprisingly, bouncy numbers become more and more common and by the time we reach 21780 the proportion of bouncy numbers is equal to 90%.
Find the least number for which the proportion of bouncy numbers is exactly 99%.
No comments:
Post a Comment